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Finding spiral structures in images of galaxies

By B.D. RipLEY AND A.I. SUTHERLAND

Department of Statistics, University of Strathclyde, 26 Richmond Street,
Glasgow G1 1XH, UK.

Much recent work in statistical image analysis has been concerned with ‘cleaning’
images by a bayesian statistical analysis incorporating a prior model, which reflects
the spatial structure of the image. In almost all cases this has involved a description
of the image at pixel level. In this paper we take the process further, and develop a
spatial stochastic process of objects present in the image. The general theory is given
and applied to images of spiral galaxies, with the aims of producing better schematic
reconstructions and of automatically classifying galaxies.

1. Bayesian image analysis

This has been the cornerstone of most recent statistical approaches to image
reconstruction, ‘cleaning’ and de-blurring (Besag 1983, 1986; Geman & Geman
1984 ; Marroquin ef al. 1987; Molina & Ripley 1989; Ripley 1986). A true image S is
regarded as a member of finite-dimensional class of & of possible true images. The
prior distribution P(S) assigns preference amongst the class <. An image Z is
observed, almost always an array of intensities or colours at each rectangle of a m xn
grid. (The rectangles are termed pixels.) The observation process is modelled by a
probability distribution P(Z|S) incorporating the noise, distortion, blurring and so
forth of the observation process. Then inference about S is based on the posterior
distribution P(S|Z), which is given by

P(S|Z) oc P(Z|S) P(S). (1)

The normalizing constant is not needed provided we are only interested in the
relative weight given to ‘true’ images S by P(S|Z).

In almost all examples (including all those in the references above), the description
of & is again pixel based. That is, the true image is described by a M x N grid of either
intensities or perhaps a grid of classifications. Most authors have taken the grids for
Z and 8 as coincident, so that each pixel of a remotely sensed image is classified by
landuse (Besag 1983, 1986), and a digital charge-coupled device (ccp) image of
galaxies is reconstructed as a grid of intensities (Molina & Ripley 1989). From a
traditional statistical perspective § is a realization of a two-dimensional stochastic
process observed with noise and distortion, and the aim is to estimate the original
realization S.

It has been commented frequently that the pixels of & are artificial, an artefact
of the observation process. For example, in remote-sensing classification of landuse,
a pixel could easily be made up of parts of two or more landuses. This problem can
be ameliorated considerably by choosing smaller pixels, so that M x N is a much finer
grid than m x n (an example is given in Ripley 1990). However, there remains the
fundamental objection that the prior stochastic process is defined via an artefact; it
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478 B. D. Ripley and A. 1. Sutherland

Figure 1. A 256 x 256 digital image with 256 grey levels. This is of galaxy NGC6814,
classified Sb.

Figure 2. The SBb(s) galaxy NGC1300. This is the ‘type’ galaxy of that class. Image details as
figure 1.

has proved difficult to relate the stochastic processes used at different grid sizes
(Gidas 1989) let alone relate them to the underlying continuum. Nevertheless, for
reasons of computational feasibility and convenience pixel-based priors are used,
often rather successfully. Recent reviews are given by Besag (1989), Geman (1990)
and Ripley (1988, 1990).

A different approach, that of describing objects in the image, has been pioneered
by Grenander (1983) (cf. Chow et al. 1989). Our examples will be images containing
stars and spiral galaxies. At our scale, stars are point sources and so can be described
by location (on the celestial sphere) and apparent brightness. Spirals need a fuller
description ; two examples are shown in figures 1 and 2. Our description (elaborated
in later sections) will be by the radius of the central disc, the length of the bar (if any)

Phil. Trans. R. Soc. Lond. A (1990)
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Stochastic spirals 479

and a description of a finite number of arms. Each arm is defined by a finite number
of segments of fixed length together with the angles between segments. That
describes a single spiral within a plane; an image then contains stars, and spirals
transformed by a specified translation, scale, rotation in three dimensions followed
by a projection onto the viewing plane. Although this amounts to a large number of
parameters, there are in total tens or hundreds rather than the hundreds of
thousands of (pixel) photon-counts which make up the raw data. Chow et al. (1989)
worked with outlines of a human right hand. The outline is described by a series of
arcs, about 36, forming a closed curve. Each arc is specified by a scaling and rotation ;
there is also a global transformation (translation and so on).

Such descriptions completely avoid including any part of the observation process.
They result in a very appreciable data reduction, and provide descriptions that are
very easy to interpret. They are also very suitable to use as the input to a
classification scheme for galaxies. The end point of the data analysis might be the
sort of catalogue a human interpreter might produce, a list of the form

at coordinate x, y there is a SBab(r) galaxy of total brightness M.

Simpler descriptions underlying & also allow more information to be provided
about P(S|Z). When & is pixel-based, some extreme summary is needed. It has
become conventional to show the mode of P(S|Z) as the MAP (maximum a posteriors)
estimator of S. Except in one very special case (Greig ef al. 1989) the MaP estimator
is too expensive to compute exactly, so in fact what is shown is the results of our best
attempts at the implied optimization. One of the most-used methods of optimization
is simulated annealing (Ripley 1987, §7.2; Aarts & Korst 1989). This depends on
taking samples from

P(S12) o< [P(S] Z)]

for large inverse temperature A. Since A is large, it is clear that P, concentrates on
images S with high posterior probability, and hence images with maximal or near-
maximal P(S|Z) are produced more frequently. An alternative would be to show a
few samples from P(S|Z). With the methods of simulation used for pixel-based
descriptions it is difficult to achieve sufficiently independent samples to give a
representative view of P(S|Z). With object-based descriptions samples from P(S|Z)
are easier to generate and tend to be much easier to interpret. It is also possible to
estimate mean values for part of the description S, just by averaging over the
samples, and so to show an estimated mean spiral galaxy, for example.

Classification

As noted above, galaxies are classified into about 30 types by their shapes
(ellipticals, spirals, spirals with bars, tightness of arms and so on). This can also be
incorporated into the bayesian framework. Let 7' = 1, ..., label the types. Then we
need to specify P(T =7),7 = 1,...,t, the underlying frequencies of each type. The
analysis described above for each type gives P(S|T) and P(Z|S). Then

P(S,T|Z) oc P(Z|8)P(S|T)P(T) 2)

and, in principle, this can be summed over S to give P(7'| Z). Then a classical rule in
statistical pattern recognition (Devijver & Kittler 1982) would be to classify the
galaxy as the type maximizing P(7T' = 7| Z). In the terminology of statistical decision
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480 B. D. Ripley and A. I. Sutherland

theory this is the Bayes’ rule for the zero-one loss function. One hopes that P(T'| Z)
will be heavily concentrated on one value; otherwise it may be helpful to display the
distribution over the more probable types.

One way to overcome the apparent computational difficulty in summing over S is
to use simulation methods. Suppose we generate M (large) samples 7; from P(7'), then
for each generate an S, from P(S| 7). We then have M independent samples (7;,S;)
from P(T,8) = P(S|T)P(T). Accept each sample with probability proportional to
P(Z|8;), ideally with probability

P(Z]8;)/max{P(Z|S)|SeF)}. (3)

Then we obtain m < M samples from P(S,T'| Z), and the frequency of 7} = 7 amongst
these m estimates P(T = 7 | Z). Since we do not need P(1'| Z) at all precisely, a small
value of m will suffice. (This is fortunate, since the acceptance probabilities may well
be small, and hence m very much less than M.) Unfortunately this method does not
work with the iterative simulation methods we use in later sections. (They reject
changes to samples sequentially with probability depending on ratios of P(S|Z,
T = 71), and so the probability of rejection depends on 7' as well as S.)

2. Stochastic models for spiral galaxies

The prior stochastic processes used in pixel-based descriptions & are chosen to be
Markov random fields (surveyed by Geman 1990), chosen principally for com-
putational simplicity. Provided P(Z|S) is defined locally, at each pixel s P(S,|S,,
t # sand Z) depends only on S and Z at nearby pixels. (A precise statement is given by
Geman & Geman (1984, p. 728).) This enables iterative simulation methods for
P(S|Z) to be computed locally, that is using the information at a pixel and within
a small neighbourhood of that pixel.

We have encountered only one approach to using Markov random fields for spirals,
that of Seiden & Gerola (1982). This is very complex, and we prefer to use a more
geometric description & . Again, for computational reasons, we need to take the prior
distribution on S as simple as possible. For example, Chow et al. (1989) describe S by
a closed sequence of a fixed number of arcs. Each arc is derived from a template by
a rotation and uniform scaling, giving a transformation g¢,. The prior distribution is
then a gaussian Markov chain on {g,}.

Spiral galaxies show a wide range of variations (Sandage 1961; Goldsmith 1985;
Sandage & Bedke 1988). Our description of a single galaxy has a number of
components.

(@) A central disc, of random radius.

(b) Bars radiating from that disc, of random (possibly zero) length.

() Arms comprised of a finite number of line segments of fixed (pre-specified)
length connected at their endpoints.

(d) A point process attaching bars or arms to the central disc, and arms to bars.
This is a process of points on the circumference of the disc, with starting angles as
marks.

(e) A global transformation corresponding to viewing the galaxy at an arbitrary
location and random three-dimensional rotation, plus an overall rescaling over a
limited range. (Galaxies normally are contained within a single image, and have
apparent linear dimension at least a few percent of the size of the image.)

(f) Parts (a)—(e) define a sketch of the galaxy image. This is converted to a prior

Phil. Trans. R. Soc. Lond. A (1990)
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Stochastic spirals 481

Figure 3. Eight simulations from the prior model for an arm, oriented in a similar way to one of
the arms of figure 1. The white outlines indicate the width of the fitted grey-level surface. In these
simulations the number of segments was kept fixed at 11.

on grey levels by assigning a cylindrical normal distribution to each line segment and
a bivariate normal distribution within the central disc.

The distributions corresponding to all these components have to be completely
specified, as do their dependencies. Wherever possible the components are taken as
independent, for simplicity. For example, we might expect that the grey-level
representations of adjacent line segments in an arm might be modelled by a
dependent process, but this refinement was not introduced at first, and did not prove
essential.

The description of an image consists of a list of objects, both spiral galaxies and
stars. We can then regard the prior as a marked point process (Stoyan et al. 1987),
where the marks are the (very complex) descriptions of the objects. For simplicity
this marked point process is taken to be Poisson.

We have not yet considered all the levels of modelling an image in detail. The
examples in later sections concentrate on fitting arms. An arm consists of a finite
sequence of line segments of fixed length, joined at angles 6;, and so is specified by
(n,04, ...,0,_,) where there are n segments and 6, is the angle between segments ¢ and
¢+ 1. This is a terminating Markov chain. Thus given the first » segments, (r,6,, ...,
6,_,), there is a probability ¢ that there will be a segment r+1, and if there is, the
angle 6, between segments » and r+ 1 has a distribution depending only on 6,_,. In
our examples 6, had a N(ab,_,,«,) distribution, and ¢ ~ 0.9 corresponding to an
expected length of 1/(1—¢) ~ 10 segments. Some example are shown in figure 3,
with » held constant at 11. The distribution of an arm depends heavily on 6,, and this
is specified as part of the ‘attachment’ point process.

3. Simulating samples from the posterior distribution

The simulation of a spiral from the prior is rapid since it is made up of a number
of independent components (§2a—f). In principle, simulation of the posterior can
be done by rejection sampling as at equation (3). To do so we must specify fully
P(Z|8). Studies of ccp images (Molina & Ripley 1989) showed that the noise was
practically independent from pixel to pixel but had a variance which increased with
intensity. The images of figures 1 and 2 were digitized from prints via a TV camera
and are expressed as intensities on the scale 0-255.

Phil. Trans. R. Soc. Lond. A (1990)
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482 B. D. Ripley and A. I. Sutherland

For simplicity we worked with intensities on this scale 0-255, which certainly
includes nonlinearities in the responses both of the film and the TV camera. We
assumed independent additive gaussian noise.variance « at each pixel. From the
description S we can obtain an ‘ideal’ image Y by averaging the grey levels of S over
each pixel of Y. Then Z; is Y,; plus additive noise. Thus

1
P(21S) o exp| —5-8 =1, | n

where the sum is over all pixels. In our first experiments the grey-level height
associated with an arm segment was taken to be uniform on (0, 255). This produced
many successful fits (acceptance of S) with arms which were almost black. In the
same way that galaxies should not be too large or too small, ‘arms’ will not be
regarded as such unless they are quite visible. Thus part ( f) of the prior was redefined
to have a linear distribution of intensity on (0,255). In this case the probability of
acceptance is essentially zero unless the trial S has arms corresponding extremely
well to those visible in the image, a very rare event by chance.

These difficulties may be overcome by iterative simulation (Ripley 1987, §4.7).
Rather than simulate a whole galaxy at once and then accept (or more likely reject),
we consider a change from S to §’. Then if

_PS'1Z) _PZIS)P(S)
P=P®12) ~ PZ|8) PS)’

®)

the description S is replaced by §” with probability min(1,p). This process is
repeated, building up a sequence of small changes to the description S. Under mild
conditions this process converges, as the number of attempted changes increases, to
give samples with distribution P(S|Z). The conditions require symmetry of S S’
and 8"~ and the ability to reach any point of & by a sequence of changes.

For simplicity, consider just one arm. A change could correspond to selecting one
segment and altering its characteristics. If we alter the grey-level representation, the
first term of (5) only depends on observations at pixels within that segment. If we
alter the angle, all later segments on the arm are affected, but still the number of
pixels affected, and hence the sum at (4), is a small part of the image. The net effect
is that if the changes to S are chosen judiciously, p can be computed rapidly and will
often be appreciable, so an acceptable proportion of proposed changes are made.

It may also be worth considering changes to more than one segment sim-
ultaneously. Changes to the angle of the first segment have a major effect on the
overall fit and will rarely be accepted. Changes of the form

0;>0;+08, 04y >0;,—0
shift segments ({42, ...,%) in a small parallel movement, and
0;~>0,+38, 03>0,,—28, 0,,>0,,+9,

leave segments (143, ..., n) essentially unchanged.

The art of iterative simulation is to choose changes such that (5) is easy to
calculate, their acceptance rate is high and iterations make rapid progress through
the space & except where the fit to the observed image is very clear-cut. This is very
much an art, at present depending heavily on watching experiments of iterative
simulations.

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 5. Eight posterior simulations for one of the arms of figure 1.

Examples

We illustrate just the fitting of arms to some of those in the galaxies NGC6814 and
NGC1300 shown in figures 1 and 2. The initial position of the arm was taken from a
manual sketch; the starting point and starting angle are held constant throughout
the experiments.

Three of the four arms tried produced very satisfactory fits. It is clear from figures
4, 5 and 6 that the posterior distribution is heavily concentrated on one ‘shape’
for the arm, and there is serious uncertainty in the width of arm only where the
intensity is low.

The lower arm of figure 2 caused difficulty. The posterior distribution is
concentrated on an arm that bends round to overlap the upper arm. When we recall
that arms are fitted independently this is not surprising. The lower arm shows a large

Phil. Trans. R. Soc. Lond. A (1990)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

484 B. D. Ripley and A. I. Sutherland

Figure 6. Fitted arms for figure 2.

Figure 7. A range of posterior simulations for the lower arm of figure 2.

‘gap’in figure 2. Although the starting point for the iterative simulation was on what
is to us the obvious arm, this has too low an intensity and is too diffuse, so rapidly
the iterative process tries other positions of the arm before fixing on that shown. The
posterior fits are shown with » fixed; with » allowed to vary a very short arm is
chosen with an appreciable probability (figure 7).

These examples show some of the difficulties of identifying spirals. We tried a
number of edge-detection techniques to extract the initial S automatically,
completely without success. Yet the examples are fairly simple spirals ; some galaxies
have spiral arms that can be traced through many turns (Sandage 1961). We believe
that it will only be possible to extract spiral structures by incorporating some global
notion of shape, and that to regard the data as a sample from a spatial stochastic
process of objects is perhaps the easiest way to do so. 4

Phil. Trans. R. Soc. Lond. A (1990)
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The Sun workstations used in this analysis, and one of us (A.I.8.), were supported by SERC under
its ‘Computational Science’ and ‘Complex Stochastic Systems’ Initiatives.
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gure 1.

A 256 x 256 digital image with 256 grey levels. This is of galaxy NGC6814,
classified Sb.
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gure 2. The SBb(s) galaxy NGC1300. This is the ‘type’ galaxy of that class. Image details as
higure 1.
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igure 3. Eight simulations from the prior model for an arm, oriented in a similar way to one of
ie arms of figure 1. The white outlines indicate the width of the fitted grey-level surtace. In these
mulations the number of segments was kept fixed at 11.
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gure 4. Fitted arms (samples from the posterior) for two of the arms of figure 1.
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gure 5. Eight posterior simulations for one of the arms of figure 1.
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gure 7. A range of posterior simulations for the lower arm of figure 2.
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